Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Macromolecular Materials and Engineering ; 308(3), 2023.
Article in English | ProQuest Central | ID: covidwho-2287253

ABSTRACT

Nanofiber‐based products are widely used in the fields of public health, air/water filtration, energy storage, etc. The demand for nonwoven products is rapidly increasing especially after COVID‐19 pandemic. Electrospinning is the most popular technology to produce nanofiber‐based products from various kinds of materials in bench and commercial scales. While centrifugal spinning and electro‐centrifugal spinning are considered to be the other two well‐known technologies to fabricate nanofibers. However, their developments are restricted mainly due to the unnormalized spinning devices and spinning principles. High solution concentration and high production efficiency are the two main strengths of centrifugal spinning, but beaded fibers can be formed easily due to air perturbation or device vibration. Electro‐centrifugal spinning is formed by introducing a high voltage electrostatic field into the centrifugal spinning system, which suppresses the formation of beaded fibers and results in producing elegant nanofibers. It is believed that electrospinning can be replaced by electro‐centrifugal spinning in some specific application areas. This article gives an overview on the existing devices and the crucial processing parameters of these nanofiber technologies, also constructive suggestions are proposed to facilitate the development of centrifugal and electro‐centrifugal spinning.

2.
Macromolecular Materials & Engineering ; : 1, 2022.
Article in English | Academic Search Complete | ID: covidwho-2085081

ABSTRACT

Nanofiber‐based products are widely used in the fields of public health, air/water filtration, energy storage, etc. The demand for nonwoven products is rapidly increasing especially after COVID‐19 pandemic. Electrospinning is the most popular technology to produce nanofiber‐based products from various kinds of materials in bench and commercial scales. While centrifugal spinning and electro‐centrifugal spinning are considered to be the other two well‐known technologies to fabricate nanofibers. However, their developments are restricted mainly due to the unnormalized spinning devices and spinning principles. High solution concentration and high production efficiency are the two main strengths of centrifugal spinning, but beaded fibers can be formed easily due to air perturbation or device vibration. Electro‐centrifugal spinning is formed by introducing a high voltage electrostatic field into the centrifugal spinning system, which suppresses the formation of beaded fibers and results in producing elegant nanofibers. It is believed that electrospinning can be replaced by electro‐centrifugal spinning in some specific application areas. This article gives an overview on the existing devices and the crucial processing parameters of these nanofiber technologies, also constructive suggestions are proposed to facilitate the development of centrifugal and electro‐centrifugal spinning. [ FROM AUTHOR]

3.
Polymers (Basel) ; 14(7)2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-1785882

ABSTRACT

Increasingly prevalent respiratory infectious diseases (e.g., COVID-19) have posed severe threats to public health. Viruses including coronavirus, influenza, and so on can cause respiratory infections. A pandemic may potentially emerge owing to the worldwide spread of the virus through persistent human-to-human transmission. However, transmission pathways may vary; respiratory droplets or airborne virus-carrying particles can have a key role in transmitting infections to humans. In conjunction with social distancing, hand cleanliness, and other preventative measures, the use of face masks is considered to be another scientific approach to combat ubiquitous coronavirus. Different types of face masks are produced using a range of materials (e.g., polypropylene, polyacrylonitrile, polycarbonate, polyurethane, polystyrene, polyester and polyethylene) and manufacturing techniques (woven, knitted, and non-woven) that provide different levels of protection to the users. However, the efficacy and proper disposal/management of the used face masks, particularly the ones made of non-biodegradable polymers, pose great environmental concerns. This review compiles the recent advancements of face masks, covering their requirements, materials and techniques used, efficacy, challenges, risks, and sustainability towards further enhancement of the quality and performance of face masks.

SELECTION OF CITATIONS
SEARCH DETAIL